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Introduction

The term artificial intelligence (AI) was first introduced by 
John McCarthy in 1956, which refers to “The science and 
engineering of making intelligent machines, especially intelligent 
computer programs”. According to the United States 
National Cancer Institute (NCI), AI is defined as using 
a computer to perform tasks commonly associated with 
human intelligence. Machine learning (ML) is a type of AI 
that is not explicitly programmed to perform a specific task 
but rather learn iteratively to make predictions or decisions. 
Deep learning (DL) is a subset of ML that uses artificial 
neural networks modeled after the process of human brains 
learning and acquiring information from huge amount of 
data. Recent researches demonstrate that AI based on DL 
outperforms humans in many aspects such as visual tasks, 
target recognition, and biomedical image recognition (1-3). 
Within medical imaging field, AI shows satisfactory results 

for detecting, characterizing, and monitoring objects, which 
exerts impact on several aspects of radiation oncology, such 
as target delineation (4).

Nasopharyngeal carcinoma (NPC) is a type of malignant 
tumor originated from nasopharyngeal mucosa, as a 
consequence of genetic variation, environmental factors, 
and EBV infection (5). Due to the radiosensitivity and deep 
anatomic location of NPC, radiotherapy (RT) has been the 
main treatment method for NPC since 1965. In 2018, there 
were 129,000 new cases of NPC around the world and its 
geographical distribution is extremely unbalanced, with 
70% of cases occurring in the east and south-east Asia (6). 
However, facing the serious shortage of RT staff in endemic 
area, the diagnosis and treatment of NPC imposes a huge 
burden on clinicians (7). Using AI to assist clinicians in the 
treatment of NPC is expected to improve work efficiency, 
accuracy, and save human resources costs. In this review, 
the current state and anticipated future impact of AI, which 

Review Article

The role of artificial intelligence in nasopharyngeal carcinoma 
radiotherapy

Xue-Song Sun1,2, Lin-Quan Tang1,2, Qiu-Yan Chen1,2, Ying Sun1,3, Hai-Qiang Mai1,2

1Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 

Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China; 2Department of Nasopharyngeal 

Carcinoma, 3Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China

Contributions: (I) Conception and design: QY Chen, Y Sun, HQ Mai; (II) Administrative support: QY Chen, Y Sun, HQ Mai; (III) Provision of study 

materials or patients: XS Sun, LQ Tang; (IV) Collection and assembly of data: XS Sun, LQ Tang; (V) Data analysis and interpretation: XS Sun, LQ 

Tang; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Hai-Qiang Mai, MD, PhD. Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng 

Road East, Guangzhou 510060, China. Email: maihq@mail.sysu.edu.cn.

Abstract: Artificial intelligence (AI) is a new kind of technology aiming at simulating and expanding 
human intelligence. With the continuous development of science and technology, the application of AI has 
penetrated in all aspects of tumor radiotherapy (RT), which has greatly reduced the workload of doctors and 
physicists and improved work efficiency. Nasopharyngeal carcinoma (NPC) is a type of malignant tumor with 
obvious geographical distribution, especially in the east and southern Asia. RT is the main treatment method 
for NPC. In this review, the current state and anticipated future impact of AI, which focused on common 
methods in the medical imaging, data analysis and possible applications in NPC treatment, are discussed.

Keywords: Nasopharyngeal carcinoma (NPC); artificial intelligence (AI); automatic delineation

Received: 02 March 2020; Accepted: 20 March 2020; Published: 30 June 2020.

doi: 10.21037/anpc.2020.03.02

View this article at: http://dx.doi.org/10.21037/anpc.2020.03.02

6

https://crossmark.crossref.org/dialog/?doi=10.21037/anpc.2020.03.02


Annals of Nasopharynx Cancer, 2020Page 2 of 6

© Annals of Nasopharynx Cancer. All rights reserved. Ann Nasopharynx Cancer 2020;4:2 | http://dx.doi.org/10.21037/anpc.2020.03.02

focused on common methods in the medical imaging, data 
analysis and possible applications in NPC treatment are 
discussed.

Automatic target delineation

There are two main principles of RT for malignancy 
including NPC. The radiation dose for tumor areas should 
be intensive enough, while the dose for surrounding 
normal tissues and organs should be reduced to minimum. 
Therefore, accurate delineation of the tumor target and 
organs at risk (OARs) is the premise and guarantee for 
successful treatment (8). However, due to the limitations of 
radiologists’ subjectivity and lack of experience, it is difficult 
to ensure the consistency of the outline among clinicians. 
Additionally, because of the complexity of the nasopharynx 
structure and its adjacent tissues, it is a time-consuming 
process to delineate the target area and normal tissues for 
treating NPC (9). Clinicians need to delineate tumor lesions 
and OARs layer by layer, which compromises the efficiency 
of the work. Taking this into consideration, the application 
of AI to achieve automatic target delineation has become 
a current research hotspot, aiming to reduce the variation 
between clinicians to ensure accuracy as well as save time 
needed for target design. At present, the most two common 
methods for automatic sketching are Atlas and DL.

Atlas based automatic delineation

By building a contrast image database, Atlas uses the 
method of rigid and deformation rectification to realize 
the automatic delineation of the tumor target area and 
the OARs (10-13). Pinnacle first achieved the automatic 
drawing of the region of interest (ROI) with the help of 
Atlas. On this foundation, Google has developed an AI 
system that can automatically sketch head and neck tumor 
lesions through ML (14). In order to further evaluate the 
application value of this method, Sims et al. used Atlas to 
delineate a patient’s brain stem, parotid gland, and mandible 
automatically, and manual delineations were considered 
as the gold standards. The Dice similarity coefficient 
(DSC) and ROC curve were used to evaluate the automatic 
delineation in its volume, sensitivity, and specificity. It 
is encouraging that Atlas-based automatic segmentation 
exhibits satisfactory sensitivity and specificity for the OARs 
being studied (15). In terms of work efficiency, it was also 
confirmed that automatic delineation technology based 
on Atlas could save more time compared with manual 

delineation for head and neck cancer (HNC) (16).
However, the Atlas-based AI maps the target area 

by extrapolation of the constructed library, so obvious 
limitations exist in dealing with the anatomical variations 
among different patients. For example, Xu et al. found that 
the use of automatic segmentation based on Atlas performed 
poorly in small-scale coronary artery or brachial plexus 
delineation, which required additional manual correction (17).

DL based automatic delineation

Different from the Atlas method, the DL algorithm based 
on a neural network is effectively trained using the standard 
data set and realizes the automatic delineation through 
the algorithm logic, which will improve performance. To 
compare the two methods, Zhang et al. selected CT images 
from 40 patients (including 10 each of head and neck, 
chest, abdomen, and pelvic tumor) and then used Atlas and 
DL based software to delineate the OARs. The manual 
delineation from senior RT physicians was regarded as 
the gold standard. The results showed that the DL-based 
automatic delineation achieved better accuracy compared 
with the Atlas-based method (18). Similarly, Yang et al. 
provided a platform for evaluating the performance of auto-
segmentation methods of the OARs in thoracic CT images. 
It revealed that the lungs and heart can be segmented fairly 
accurately by various methods, while deep-learning methods 
performed better on the esophagus (19). All of these studies 
demonstrated that DL based automatic delineation was 
superior to the Atlas-based method.

Convolutional neural network (CNN) is a kind of 
feedforward neural network, which has outstanding 
performance in processing large-scale image, and has 
been widely used in image classification. Compared with 
other neural network structures, CNN needs relatively 
few parameters, which facilitates its wide application in 
many fields. Recently, with ML-based technology applied 
to target delineation, many scholars proposed CNN-based 
automatic segmentation, including deep convolutional 
neural networks (DCNN) (which means the DL methods 
using convolution neural networks) and fully convolutional 
neural networks (FCNN) (20-23). The biggest difference 
between FCNN and traditional CNN is that FCNN is not 
limited by high computational redundancy for the improved 
algorithm, so it can capture the whole image, not only 
the local features (22). In HNC, an innovative automated 
segmentation method that combines a FCNN with a shape 
representation model (SRM) was proposed. The new 
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method can better solve the problems of substantial inter-
patient anatomical variation and low CT soft tissue contrast. 
Therefore, its segmentation effect is consistently superior 
to the Atlas and the traditional DL model (22).

Although the multi OARs segmentation model based 
on the whole CT image can complete the DL of multiple 
organs at the same time, its performance of each organ 
delineation is not always satisfactory. As the target 
organs only fill a small part of the input image, it is easy 
to be confused by the complex and various content in 
the background area. As a result, some target OARs are 
misjudged. Therefore, some scholars put forward an organ-
specific segmentation model, with the design of a special 
segmentation network for each target organ according to its 
property and the regional image information of the specific 
organ (20,24,25). However, it should be noted that there 
are more than ten OARs for NPC, diverse independent 
models were needed for the automatic segmentation. Thus, 
the training time is prolonged and the generalization of 
the model weakened. These disadvantages limit its value in 
clinical application. In that case, further optimization is still 
needed to improve the delineation of the OARs for NPC.

In terms of the tumor target in NPC, Lin et al. made 
a breakthrough in the clinical application of automatic 
delineation (26). A total of 1,021 patients were included 
in the study. Specifically, a FCNN architecture, which 
was composed of encoder and decoder paths to conduct 
the segmentation task, was designed. The AI-generated 
contours achieved high level of accuracy when compared 
with ground truth contours in testing cohorts (DSC, 0.79). 
In the multi-center evaluation, AI assistance improved 
contouring accuracy (five out of eight oncologists had a 
higher median DSC after AI assistance; average median 
DSC, 0.74 vs. 0.78, P<0.001). Besides, the AI-generated 
contours also showed 39.4% less contouring time, and 
reduced the intra-/inter-observer variations by 36.4% and 
54.5%, respectively. The results suggested that AI assistance 
could effectively improve contouring accuracy and reduce 
intra-/inter-observer variation and contouring time. These 
advantages will positively impact the tumor control rate and 
prognosis of patients. Long-term follow-up is necessary to 
verify the survival benefit.

In conclusion, automatic delineation greatly shortens 
the working time of radiation oncologist under the premise 
of ensuring accuracy. Additionally, automatic delineation 
also reduces the discrepancy among clinicians, and it will 
become an important trend in the field of tumor RT in 
the future. Moreover, a new AI-based auto-contouring 

method was proposed for the abdominal MRI-based 
adaptive radiotherapy (ART) model built upon human brain 
cognition for manual contouring (27). Further researches 
are necessary to support the role of this method in other 
tumors.

Automatic dose calculation and optimization

Another application of AI in tumor RT is the optimization 
and calculation of target dose. Currently, there are two 
mature tools applied in clinical work, the RapidPlan 
(Eclipse) and AutoPlan (Pinnacle) platforms.

In HNC research, the advantages of an automatic plan 
based on these tools have been confirmed (28-30). The two 
different methods based on Pinnacle software and manual 
work were evaluated in the RT plan (28). The results 
demonstrated that automatic planning had some advantages 
compared with manual planning, which achieved a lower 
dose distribution of OARs with similar dose achieved in 
the tumor target area. Similarly, Fogliata et al. included 
the RT plans of 80 HNC patients treated with intensity 
modulated radiation therapy (IMRT) as the training model 
of RapidPlan, and 20 patients were selected to verify the 
model (29). After comparing the automatic and manual 
plans, it was found that the RapidPlan-based automatic 
plan performed better, and the average dose for the parotid 
gland, oral cavity, and throat decreased by 2, 5, and 10 Gy 
in automatic plans, respectively.

In NPC, the role of AI in automatic plan was also 
affirmed. A retrospective study included 97 NPC patients 
treated by IMRT, and completed the manual and automatic 
plans based on the Pinnacle treatment system (31). 
According to the results, the planning target volumes (PTV) 
coverage and homogeneity were not significantly different 
between the two plans, while the automatic plan could more 
effectively protect the OARs and decrease the mean dose by 
270–1,870 cGy.

In conclusion, the automatic RT plan based on AI greatly 
improves the quality and consistency of treatment plans 
and saves the working time of physicists, which is of vital 
significance in clinical practice.

Other applications

In addition to automatic target delineation and automatic 
planning, other applications of AI have started to be 
developed by scholars. For RT plan evaluation, Zhu et al. 
included 212 IMRT plans of prostate cancer and evaluated 
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their qualities using AI, and the results showed a predictive 
accuracy of 80% (32). In the disease diagnosis phase, AI 
tools based on DL are developed to detect nasopharyngeal 
malignancies in endoscopic or pathological images, which 
outperformed oncologist evaluation in the classification of 
nasopharyngeal mass from benign to malignant (33,34). In 
terms of risk stratification, Li et al. established a radionics 
model combined with ML method to facilitate early salvage 
for NPC patients who were at risk of in-field recurrence (35).  
Besides, a dataset-based study also verified that DL has 
utility in the identification of extranodal extension in 
patients with HNC and has the potential to be integrated 
into clinical decision-making process (36). In the prediction 
of curative effect and toxicity after RT, Ertiaei et al. created 
artificial neural networks to predict the clinical outcomes 
of trigeminal neuralgia patients treated with gamma knife 
radiosurgery on the basis of preoperative clinical factors. 
In their results, artificial neural networks could predict 
patients’ outcomes with a high level of accuracy (37).

Expectation

With the continuous development of science and 
technology, the application of AI has penetrated in all 
aspects of tumor RT, which has greatly reduced the 
workload of doctors and physicists and improved work 
efficiency. At present, an intelligent RT system based on 
a cloud platform is being developed. A remote RT system 
with the mode of “AI + RT” will provide important quality 
assurance for primary hospitals to carry out standardized 
RT. In addition, the probability that AI may significantly 
develop beyond its current capabilities is also recognized. 
Previously, it might have been mistakenly assumed that AI 
would continue to be less accurate than humans in medical 
decision-making. However, whether the performance of AI 
should only be judged and compared with human work is 
an issue worth discussion. For example, the contour from 
an experienced clinician is generally considered as the gold 
standard, but that doesn’t mean there is no space for further 
improvement (4). Therefore, the future of AI in the field of 
RT is promising.

The current research of AI still has some limitations. 
Primarily, its internal operation process and principle are 
not fully clarified. Even if it can behave similarly to human 
beings, its perception and processing are still different. 
On the other hand, the thinking mode of clinicians is also 
difficult to fully imitate. Therefore, AI could not completely 
replace the work of doctors and physicists, at least for now. 

However, the important trend of big data analysis and ML 
is expected to make it possible. The development of more 
precise AI algorithms and models, which makes RT more 
accurate and effective, is an exciting prospect.
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